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ABSmCT 

An experimental e lec t ros ta t ic  ion thrustor employing cesium on tung- 

s ten contact-ionization i s  described that has promise of meeting the approx- 

imate requirements for  cer ta in  s a t e l l i t e  a t t i tude  control and s ta t ion  

keeping missions. 

concept of divergent flow between coaxial cylinders. 

t i n g  area is  1.0 cm2 (1.52 mm chord length by 6.35 cm long). 

of the convex emitting surface i s  3.0 mm. 

The basic configuration presented i s  derived from the 

” The ionizer emit- 

The radius 

Power eff ic iencies  of 45% 

(excluding vaporizer and n e u t r a i z e r  powers) have been achieved at thrust 

levels  of approximately 1.56 mN (0.35 mlb) and specific impulses near 

7000 s. Typic& accelerator drain currents are on the order of Z$ of 

the beam current or less. Numerical analysis of possible ~3l .e~-  . ’  I 

trode erosion due t o  charge exchange indicates that an electrode lifetime 

i n  excess of 20 O O O h r s  should be obtainable. 

INTRODUCTION 

Several contact-ionization thrustor geometries have been evaluated 

analytically.’ Reported experimental evaluation t o  date has been l i m i t e d  

primarily t o  convergent flow and plane-parallel flow geometries. T h i s  

paper presents and discusses experimentd performance of a thrustor based 

on divergent flow between coaxial cylinders .lj2 Primary theoret ical  

advantages of this thrustor concept are (1) increased current density at 

the  emitter compared w i t h  other geometries so tha t  the required emitter 

s ize  and radiation power losses for  a given thrust  are reduced, ( 2 )  seduced 

ion and neutral  density i n  the accelerator aperture where de t r i l ue~ ta l  
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charge exchange can occur. 

The thrustor  investigated has a th rus t  within a range t h a t  i s  required 

for a t t i t ude  control and s ta t ion  keeping missions of satellites i n ’  t h e  

200 t o  700 kg mass range.3 

THEORETICAL PERFOFWANCE 

Space-charge l imited current flow between coaxial cylinders1 can be 

wri t ten as 

3, = 4/9E0(2q/m) 1/2,3/2(,zP2)-1 (1) 

where eo is the permitt ivity of f r ee  space, q/n is the charge-to-mass 

r a t i o  of the par t ic le ,  r i s  the radius, Q, i s  the potential, at  radius 

r, and p i s  a nondimensional function of r/ro where ro i s  the 

radius of the emitter. 

( i n  SI un i t s )  

If cesium i s  considered, equation (1) becomes 

je = 4 . 7 4 m 0 - ~ ~ , ~ / ~ ( r ~ p ~ ) - ~  ( 2 )  

For the idea l  model, ro = 3.0 m2 r/ro = 2, and 

actual thrustor  only a 30° segment of the cylinders wgs  used and an aper- 

tu re  was made i n  the anode cylinder. To investigate t h e  e f fec ts  of these 

p2  = 0.279. In  the 

modifications and design a sui table  electrode system, an e lec t ro ly t ic  

tank analog4 and an I B M  7094-computer program5 were u t i l i zed .  A cross- 

sectional sketch of the  electrode shapes arrived at by these techniques 

i s  shown i n  Fig. 1. Also  shown i n  Fig. 1 @re typica l  t r a j ec to r i e s  and 

equipotential l i nes  f o r  the converged Poisson solution a s  obtained by the 

computer program. 

60% of the accelerator aperture. 

The figure shows tha t  the ion beam occupies l e s s  than 

The ion currents predicted by the nmner- 

i c a l  solution are  compared w i t h  the  idea l  theoret ical  predictions of Eq. ( 2 )  

i n  Fig. 2. 

t o  the aperture e f fec t  ( the bulging equipotential l i nes  reduce the e l ec t r i c  

The lower ion current from the computer program i s  due largely 

f i e l d  s t rength) .  
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As stated ea r l i e r ,  one of the theore t ica l  advantages of the divergent 

flow concept i s  the reduced ion and neutral  density i n  the aperture area. 

T h i s  should be ref lected i n  a reduction i n  the mount of charge-exchange 

erosion t h a t  occurs and consequently i n  an extension of thrustor  l i fe t ime.  

I n  order t o  predict the accelerator charge-exchange erosion and thrustor  

l ifetime, an analysis was made by u t i l i z i n g  both the  e lec t ro ly t ic  tank 

analog and the  computer program. The space-charge-limited solution from 

the d i g i t a l  computer w a s  preset on %he e lec t ro ly t ic  t@nk analog. The 

beam region was then divided in to  s m a l l  areas and charge-exchange ion 

t r a j ec to r i e s  were determined from each of these areas. 

charge-exchange cross section data6 and sputtering yields  against incident 

angle and energy data,7 the mount of electrode erosion was  calculated. 

T h i s  analysis yielded the theore t ica l  charge-exchange erosion pat terns  

on the accelerator electrode shown i n  Fig. 3. The parmeters  used for  

the  study were: 

f i e l d  strength, 3 .0X106 V/m; specif ic  impulse, 8000 s; accelerator-to- 

focuser spacing (see Fig. l), 2.14 mm. The figure i s  drawn for  20 000 

hours of operation at the  above conditions. Further discussion of the  

technique used i n  this study may be found i n  references 4, 8, and 9. 

With the  use of 

beam current, 16.3 mA; neutral  atom loss ,  1.0%; e lec t r i c  

ExPmIMEmAL APPARATUS 

Thrustor Design 

A cross-sectional sketch of the thrustor  i s  shown i n  Fig. 4 and 

photographs are shown i n  Figs. 5 and 6. The overall  s ize  of the thrustor  

(including a grounded shielding screen not shown i n  the photographs) i s  

2.5 by 7.5 by 14.0 em. The t o t a l  weight of the  thrustor,  excluding the 

vaporizer, i s  approximately 0.15 kg. 

The accelerator electrode i s  made of copper and the focuser electrode 

nhaterial i s  molybdenum. Copper w a s  chosen f o r  the acceaerator so that 
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back-sputtered material would not clog the porous ionizer.  

electrodes, and heater lead-in rods are  all mounted from the s ta in less -  

s t e e l  support plake (Fig. 6) ,  which is  maintained at ionizer and focuser 

electrode potent ia l .  

insulat ion material. I n  operation, a s ta inless-s teel  grounded screen 

surrounded the thrustor  t o  prevent stray electrons from reaching the 

thrustor.  

The ionizer, 

Boron n i t r ide  side plakes confine the fibrous thermal 

The ionizer assembly i s  shown i n  Fig. 7.  The ionizer manifold consists 

of a U-shaped channel of 0.127-mm-thick tungsten sheet electron-beam welded 

t d  the'>gorous emitter. End plates ,  feed tube, and support t&s are of 

tantalum. 

the manifold t o  form an enclosure for  the heater s t r i p  (see Fig. 4 ) .  

Heating the  ionizer i s  accomplished by radiat ion from the s t r i p .  

ionizer assembly, which is  approximately square i n  cross section (each 

side i s  2.2 mm long),  has an emitting surface area of 1.0 an2. 

Another U-shaped channel of tungsten is  welded t o  the back of 

The 

This  

convex emitting surface has a radius of 3.0 mm, a chord length of 1.52 mm, 

and an overal l  length of 6.35 cm. 

Test Fac i l i ty  

A schematic drawing of the  t e s t  setup i s  shown i n  Fig. 8. Included 

i s  a wiring diagram for equipment used t o  operate the thrustor .  The main 

c h d e r  of the vacuum f a c i l i t y  i s  2.14 m long, bas a 1.07 m diameter, and 

contains a liquid-nitrogen-cooled condenser. The f a c i l i t y  w a s  typical ly  

pumped t o  a pressure of from 5.0X10'7 t o  3.OX1Om6 t o r r  during t e s t s  by a 

single 32-in. o i l  diffusion pump. Actual pressure depended on operating 

conditions. 

the  thrustor  chamber. 

i n  the thrustor  chamber during t e s t s .  

vacuum f a c i l i t y  i s  given i n  Ref. 10. 

A 12-in.-diameter gate valve separated the  main chamber from 

A liquid-nitrogen-cooled condenser was also used 

A more detailed description of the  

A l t h r u s t o r  electrFcal connections 
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were made through ceramic insulators  at the rear of the thrustor  chamber. 

An i so la t ion  screen downstream of the thrustor  was maintained at 

e l e c t r i c a l  ground t o  prevent electrons from reaching the thrustor chamber. 

Instrumentation 

The meters used i n  measuring beam currents and accelerator drain 

cWrents had an accuracy of &l.% of full scale. 

multiple shunt c i r cu i t s  t o  allow ful l -scale  current readings from 0.L t o  

30 mA. 

They were provided with 

A molybdenum tipped probe assembly w a s  used t o  investigate beam 

dispersion and t o  obtain a check of the t o t a l  ion-beam current obtained 

from the  meter readings. The assembly of seven buttons, each 6.35 mm i n  

diameter, w a s  located i n  the main chamber, approximately 0.47 m downstream 

from the  thrustor.  

produced by ions s t r ik ing  the  probe buttons were Gecorded on x-y recorders. 

A discussion of the d e t a i l s  of molybdenum tipped probe operation can be 

found i n  R e f .  11. 

A s  the assembly traversed the  ion beam, the currents 

RESUZTS AND DISCUSSION 

Ionizer Current Density and CriticaJ Temperature 

I n  the analog studies of the thrustor  optics, the foCUser-tQrionizer 

spacing (dimension a, Fig. 1) w a s  found t o  be a cr i t icaL factor  affect ing 

current density. 

function of t o t a l  accelerating voltage Qa for  various focuser-to-ionizer 

spacings. 

mm, and Q$Qnet was fixed at 2.0. The net accelerating potent ia l  between 

the  emitter and ground i s  

(aa = 6420 V ) ,  the  computer model current densi t ies  ranged from 143 t o  

210 A/m2. 

T h i s  closer accelerator spacing yielded s l igh t ly  poorer optics and lower,, 

5 

Fig. 9 shows the computer program current density as a 

The focuser-to-accelerator spacing w a s  held constant at 2.14 

Qnetv A t  a f i e l d  strength of 3,0X1O6 v/m 

A focuser-to-accelerator spacing of 1.52 mm was  a l so  considered. 
> 



thrust (due t o  a lower specif ic  impulse) for  the same 

f i e l d  strength. 

i? all cases. 

. ra t io  and 

The accelerator aperture w a s  held constant at 3.0 mm 

Figs. 10a and lob show- comparisons between the experimental currenk 

density and the d i g i t a l  computer predictions for  the two focuser-to- 

accelerator spacings considered. 

experimentally at a f i e l d  strength of 3.Ox1O6 V/m was  160 A/m2. 

Qa/Qnet from 1.5 t o  3.0 with a constant Qa did not s ignif icant ly  change 

the experimental current density, 

computer program. 

The maximum current density obtained 

V a r y i n g  

This resu l t  had been predicted by the  

The porous tungsten used i n  all the tests w a s  a high quality E-4 

type1‘ (spherical  powder, 1 t o  5 p 

density).  

determined from pe l le t  evaluations,13 are compared both w i t h  data taken 

during thrustor operation and w i t h  the  zero-field Taylor-Langmuir curve 

for sol id  tungsten,14 

minimum neutral  f ract ion ( l e s s  than 1%), whereas the data reported herein 

are at temperatures at which the current density dropped t o  95% of i t s  

maximum value. 

probably yield almost the  same resul ts ,  since during the tests, it w a s  

observed, that the minimum accelerator drain currents occured near t h i s  

f ract ion of the t o t a l  beam current. I n  the fabrication of the ionizer 

assemblies, many processes may affect  the c r i t i c a l  temperature. 

factor, for  example, i s  the,technique used t o  trim the ends of the ionizer 

assemblies i n  which ordinary machine o i l  i s  used t o  cool the tungsten. 

T h i s  procedure could r e su l t  i n  carbon contamination of the  tungsten and 

r a i se  the c r i t i c a l  temperature,15 which possibly accounts for  par t  of the 

increase over the  data frm reference 13. 

i n  dim., about 79% of theoret ical  

In  Fig. 11 c r i t i c a l  temperature daCa on t h i s  material, as 

The c r i t i c a l  temperature datal3 are points of 

These two methods of determining c r i t i c a l  temperature 

One 

Another possible factor  i n  
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increasing the  c r i t i c a l  temperature i s  surface sintering. Although the 

ionizers were chemically etched t o  prevent t h i s  phenomenon, t h i s  e f fec t  

may have occured t o  a small degree. A third fac tor  could be oxidation of 

the ionizer surface, which can r e su l t  i n  an increase i n  c r i t i c a l  tempera- 

ture-.J-3 

Ionizer Heating 

A s  s ta ted  ear l ie r ,  the  ionizer i n  the experimental thrustor  i s  heated 

The s t r i p  has a uni’form width but by radiat ion from a hot tungsten s t r i p .  

var ies  i n  thickness along i t s  length. 

determined empirically. 

t o  the ends of the ionizer, which lose heat by conduction through the feed 

tube and support tab (see Figs. 6 and 7 ) .  

produced uniformity i n  temperature t o  within loo K over the  en t i re  ionizer. 

The s t r i p  heater used should not present any l i m i t  t o  the thrustor  l i f e -  

time, barring material defects or mechanical misalignment. 

ambient pressure and a s t r i p  temperature of 22000 K are assumed, a 1.0% 

resistance increases (due t o  evaporation of tungsten) should occur a f t e r  

2.5Xl.04 hours of operation. 

l e a s t  t e n  times this value.16 

s t r i p  i s  approximately 0.63 mm. 

however, prevents buckling, and the heater support i s  capable of at l e a s t  

as much movement as the expansion of the s t r ip .  

the most c r i t i c a l  i n  assembling and adjusting the  heater. 

The optimum configuration was  

The var ia t ion allows more power t o  be radiaked 

The chosen heater s t r i p  design 

If zero 

The to ta l  heater l i fe t ime should be at 

The l inear  thermal expansion of the heater 

A small amount of tension on the s t r ip ,  

These two factors  were 

Total experimental ionizer heater power as a function of ionizer 

temperature taken from several t e s t s  i s  shown i n  Fig. 12 .  A larger  emit- 

t i n g  areaswould result i n  a higher heating efficiency due t o  the  less than 

l inear  incre9se:in &fold s ize  and conduction lasses  with emitting,area. 
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Temperature cycling t e s t s  were made simultaneously on two heater 

designs of c i rcular  cross section (0.5 mm diam.) ; 

the  same manner as discussed previously and surrounded by a simulated 

ionizer.  The tests were conducted i n  a b e l l  jar f ac i l i t y ,  and the simu- 

Each was  suspended i n  

la ted  ionizer temperatures were measured by thermocouples, and recorded 

on s t r ip-chart  recorders. The simulated ionizer temperatures were cycled 

between 8000 and 15400 K. Approximately 3200 cycles were obtained with 

no apparent deterioration before an inadvertant pressure r i s e  i n  the b e l l  

jar terminated the t e s t .  

Accelerator Drain Currents 

Possible sources fo r  accelerator drain currents include d i rec t  

impingement, charge-exchange ion impingement, drain currents across cesium 

coated insulators,  thermionic electron emission from a hot cesium coated 

accelerator, and secondary emission resul t ing mom ion impingement. 

The d i g i t a l  computer program preCt%c%'ed. zero d i rec t  ion impingement. 

A t o t a l  of 133 hrs of thrustor  operation w a s  accumulated with the complete 

absence of any observable accelerator erosion. The average beam current 

during th i s  time w a s  5.7 mA. 
8 

Typical experimental data of the r a t i o  of total. accelerator drain 

current J A  t o  beam current JB as a function of t o t a l  accelerating 

voltage Qa are presented i n  Figs, 13 and 14. I n  Fig. 13, typ ica l  data 

are compared fo r  three different;flow rates. 

the  reversal  of the slope of these curves w i t h  increasing voltage is  f i e l d  

enhancement of thermionic emission from the cesium coated accelerator .17 

I n  Fig. 14, r e su l t s  obtained with a background pressure of 7.0X10'7 t o r r  

are compared w i t h  those obtained at the  same mass flow r a t e  but with a 

background pressure of 6.OX1Om5 t o r r  of oxygen. 

t o  the  =stem, it may change the  thermionic emissdon character is t ics  of 

A possible explanation of 

When oxygen i s  admitted 
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the  cesiated copper accelerator surface as w e l l  as have a decarburizing 

or oxidizing e f fec t  on the i 0 n i z e r . 1 ~  

oxygen reduced the accelerator drain currents. 

change i s  not fully understood, but it i s  believed that the reduction i n  

drain currents occurs too  rapidly after the addition of oxygen (on the 

order of 1 min) t o  be caused by decarburization of the  ionizer and is  

probably due t o  a combination of the  other e f fec ts .  

I n  every instance, the addition of 

The exact mechanism of the  

From the  charge-exchange study discussed previously, the t o t a l  charge- 

exchange impingement was  calculated t o  be about 

imately 0.001% 

all the experinental drain currents may be at t r ibuted t o  thermionic 

electron emission from the  accelerator. The neutral  f ract ion for  t h i s  

calculation was  assumed t o  be 1.&. Two important factors  affect ing 

the neutral  f rac t ion  besides the character is t ics  of the tungsten are 

ions/sec, or approx- 

of a 16.0 mA ionizer current. Based on this value, nearly 

(1) temperature uniformity over the ionizer and (2 )  matching the  a r r i v a l  

r a t e  of cesium at the emitting surface with the e l ec t r i c  f i e l d  at that 

surface. I n  the present ionizer,  t h i s  second condition i s  achieved by 

contouring the back ( the  upstream face) of the porous tungsten. 

shape, shown i n  Fig. 15, w a s  obtained by se t t i ng  up an analog of the flow 

through the porous tungsten by using the e lec t ro ly t ic  tank and a technique 

described i n  Ref. 18. I n  th i s  figure, the dashed l i nes  show the  contour 

of the porous surfaces and the  sol id  l i n e s  represent surfaces where the 

pores have been closed by electron beam welding, 

Optical Characterist ics 

The f i n a l  

The opt ical  character is t ics  of the thrustor  as predicted by the analog 

and d i g i t a l  computer studies were ver i f ied  by beam probe measurements. 

Fig. 16 sh&s a contour plot of the current-density var ia t ion through a 

9 



cross section of the beam 0.47 m downstream from the  ionizer.  The beam 

current, measured while these data  Were being taken, was 3.4 mA, which 

checks reasonably well with the  4.75-mA beam current calculated by rough 

integrat ion of the  contour plot .  

be due t o  secondary emission from the  probes and/or inaccuracies i n  drawing 

the  contour p lo t  because of the l imited number of probes used. Also, 

frm the plot  it was determined that 9% of the beam current l i e s  within 

a dispersion angle of about 1 5 O ,  which supports the analog and d i g i t a l  

computer predictions of an 18O dispersion angle (see Fig. 1). 

The difference i n  values could eas i ly  

Overall Performance 

The overal l  performance of the thrustor  reported herein approximates 

the requirements for  cer ta in  s a t e l l i t e  a t t i t ude  control and s ta t ion  

keeping missions i n  which a thrus t  range of 0.445 t o  1.78 mN (0.1 t o  

0.4 mlb) i s  needed.3 These s ta t ionary-satel l i te  missions require control 

systems tha t  are l i g h t  weight, eff ic ient ,  and long-lived. I n  the  contin- 

uous correction mode of operation, approximately 0.445 niN (0.1 mlb) of 

th rus t  i s  needed for  every 160 kg of s a t e l l i t e    eight.^ Fig. 1 7  shows 

the thrus t  as a function of beam current fo r  three different  specif ic  

impulses ( the thrus t  w a s  calculated from measured beam currents and net- 

accelerating voltages). This var ia t ion i n  specif ic  impulse w a s  achieved 

by changing @$anet while maintaining constant a,. For two of the 

specif ic  impulses the data  a re  extrapolated t o  a 16.0-mA beam current 

(dashed l i n e s ) .  

Figs. 18a and 18b show power eff ic iencies  as a function of specif ic  

impulse. 

I n  Fig. 18a data are presented fo r  an accelerator-to-focuser spacing of 

1.52 mm and a beam current of 13.5 mA. The lower so l id  curve shows data  

taken ear ly  i n  the progam over a b r o a d  range of specif ic  impulse with 

These values do not include vaporizer or neutraJ-izer powers. 
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inef f ic ien t  heating and at ioniaec temperatures w e l l  above c r i t i c a l .  The 

dashed curve lndicates performance t h a t  may have been obtainable with the 

more recent heater design improvements and the c r i t i c a l  temperature data  

of t h i s  report. Figure 18b shows data taken at two different  beam currents 

obtained by using an accelerator-to-focuser spacing of 2.14 mm and improved 

heater designs. These data  are  projected fo r  operation at c r i t i c a l  temper- 

ature i n  the  same manner as was done i n  figure 18a. The data  include 

accelerator draLn power losses.  If the c i r t i c a l  temperatures of Ref. 13 

were used, instead of the c r i t i c a l  temperatures of t h i s  report, the pro- 

jections of data would y ie ld  power eff ic iencies  above 6&. 

Fig. 1 9  shows power-to-thrust r a t i o s  against specif ic  impulse at 

different  beam current levels .  The lowest sol id  curve i s  a reference plot 

for  a 100$ ef f ic ien t  thrustor .  The upper so l id  curves represent data. 

The dashed curves are  projections of the data as i n  Fig. 18b. 

using conyerging flow optics shows A s l i gh t ly  larger  thrustor lg  

projected power-to-thrust curves somewhat lower than given i n  Fig. 19. 

Since no r a w  data curves were given i n  Ref-. 19, however, comparison of 

actual performance i s  not possible. 

CONCLUS IONS 

The experimental e l ec t ros t a t i c  ion thrustor  discussed herein hw 

promise of meeting the approximate requirements for  eerT&Zn s a t e l l i t e  

a t t i t ude  c o n t r d  and s t a t ion  keeping missions. Thrust levels  between 

0.89 and 1.56 mN (0.2 and 0.35 mlb) were produced at power eff ic iencies  

t o  45% (excluding vaporizer and neutralizer powers). 

w e l l  at specif ic  impulses ranging from 5000 t o  8000.s.' 

t e r i s t i c s  are  such that no primary ion impingement on the accelerator 

electrode occurs, and drain currents are about 2$ or l e s s  of the  beam 

current. Electrode l i fe t ime as. indkcated by computer studies should be 

11 
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i n  excess of 20 000 hr. 

configuration appears t o  be i t s  long electrode and heater l ifetimes,  

improvements i n  ionizer heat shielding could increase considerably the 

power efficiency, which would result i n  a decrease i n  power-to-thrust r a t i o  

for a given specific impulse. 

While the potential  advantage of t h i s  thrustor 
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Fig. 1. - Cross section of ionizer, electrodes, and optical characteristics from digital computer 
program 
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Fig. 2. - Comparison of theoretical and 
digital computer program cur ren t  den- 
sities je as functions of total accel- 
erating voltage, ie,. 
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Fig. 3. - Theoretical accelerator erosion pattern due to charge exchange ion impingement 
after 20 000 hr at 163 AIM2; total beam current, 16.3 mA; neutral atom loss, 1. m o f  the  
total beam current. 
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Fig. 4. - Cross section of thrustor showing overall dimensions of support- 
ing structure and materials used. 
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Fig. 5. - Thrustor (vaporizer not shown). 

Fig. 6. - Partially disassembled thrustor. 
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Fig. 7. - Ionizer assembly (assembled and exploded views). 
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Fig. 8. - Test setup. 
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Fig. 9. - Effect of focuser-ionizer spacing, a, 
on emitter current  density je from computer 
program. Focuser-accelerator spacing, b, 
2.14 mm. 
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Fig. 10. - Comparison of experimental current  densities with computer 

b, 1.52 mm. 

predicted values; focuser-ionizer spacing, a, 0.127 mm. 

b, 2.14 mm. 
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Fig. 11. - Comparison of critical 
temperature measurements with 
those of Ref. 11 and with the zero- 
field Taylor-Langmuir curve for 
solid tungsten. 
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Fig. 12. - Typical experimental ionizer tempera- 

ture as a function of ionizer heater power. 
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Fig. 13. - Ratio of accelerator dra in  current, JA, to 
beam current, JB, as a function of total accelerating 
voltage, Qa, for several mass flow rates. 
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Fig. 14. - Effect of oxygen atmos- 
phere on  accelerator dra in  cur-  
rents. Calculated mass flow rate, 
m, 8.9~10-9 kgls. 
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Fig. 15. - Cross section of porous tungsten ionizer showing surfaces that have been washed 
with an  electron-beam welder. 
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Fig. 16. - Current contour map from molybdenum button probe measure- 
ments showing lines of equal current  density. Total cur ren t  calculated 
from th is  figure, 4.75 mA (solid vertical bar shows projected position of 
ionizer). 
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tal beam current for three specific 
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Fig. 18. - Thrustor power efficiency, qp, against specific impulse, Isp 
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